测试中心

当前位置: 首页 > 师资队伍 > 教师风采 > 测试中心 > 正文

张玉红

作者:   来源:      发布日期:2021-12-03   浏览:

姓名:张玉红

职称职务:教授、硕士生导师

专业方向:高分子化学与物理

办公电话:027-88662747

Email:zhangyuhong@hubu.edu.cn

研究领域与兴趣:

1.智能响应功能高分子材料

2.仿生功能材料

3.生物医用水凝胶

4.高性能膜的制备与应用

教育与研究经历:

2015.06-湖北大学化学化工学院教授

2010.4-2015.06湖北大学化学化工学院副教授

2013.11-2014.11美国佐治亚理工学院材料科学与工程学院访学学者

教学情况:

担任课程:《功能高分子》、《乳液聚合》、《高分子化学实验》、《材料表征技术》等。

主持的项目与课题:

1.湖北佳记合成材料股份有限公司,有机硅改性环氧树脂的研制,2021/01-2023/01

2.湖北省功能化学品工程技术研究中心,多功能导电水凝胶的开发及其在柔性应变传感器中的应用,2022/09-2023/09

3.等离子体化学与新材料湖北省重点实验室,表面浸润可控抗污染聚合物/SiO2复合水凝胶的制备及油水分离性能研究,2020/9-2021/8

4.武汉市千企万人支撑计划,锂亚电池功能添加剂的应用研究,2019/12-2022/12

5.生物催化与酶工程国家重点实验室,透明质酸酶响应性纳米凝胶的制备及控释行为研究,2020/01-2021/12

6.功能材料绿色制备与应用教育部重点实验室,高性能聚合物/SiO2复合水凝胶膜的构建及其油水分离性能研究, 2020/01-2021/12

7.武汉临空港经济技术开发区(东西湖区)“金山英才计划”二氧化锰的合成、改性及其在锂锰电池体系中的应用研究,2018/01-2020/12

8.江西中辉新材料有限公司,高性能压敏胶的研制,2019/07-2021/12

9.武汉昊诚能源科技有限公司,二氧化锰的合成、改性及其在锂锰电池体系中的应用研究,2019/07-2020/12

10.湖北省省高等学校优秀中青年创新团队计划项目(T201801),功能涂料研发,2018/01-2011/12

11.分离膜与膜过程国家重点实验室,P(St-BA-AA)/SiO2复合微球的调控以及超疏水油水分离膜的研制(M2-201705),2018/05-2010/05

12.有机功能分子合成与应用教育部重点实验室开放基金,PINPAM/GO有机无机复合凝胶的可控制备及其载药性能的研究,2016/09-2018/08

13.国家自然科学基金青年基金,基于小分子液滴为模板单分散聚合物/SiO2复合微球的可控制备及形成机理研究,2013/01-2015/12

14.有机功能分子合成与应用教育部重点实验室开放基金,有机无机纳米复合乳液的合成与应用研究,2013/09-2015/08

15.功能材料绿色制备省部共建教育部重点实验室开放基金,纳米复合乳液的制备,2013/10-2015/09

16.湖北省自然科学基金面上项目,以小分子液滴为模板单分散复合微球的可控制备及应用研究,2011/01-2012/12

17.湖北省教育厅青年基金项目,草莓型P(St-BA)/SiO2有机无机复合微球的制备与应用研究,2010/01-2011/12

18.广州杜丽邦化工科技公司,丙烯酰胺类共聚物絮凝剂的合成及应用研究,2010/10–2011/10

19.功能材料绿色制备省部共建教育部重点实验室开放基金,细乳液聚合制备单分散有机无机纳米复合微球及应用研究,2010/01–2011/12

近几年代表性论文(通讯作者):

1. Bidirectional optical response hydrogel with adjustable human comfort temperature for smart windows.Mater. Horiz.,2024,11: 207-216.

2.光热超疏水碳黑粒子/碱改性聚偏氟乙烯-环氧树脂复合涂层的制备及性能.复合材料学报,2024, 41(1): 180-187.

3. Transparent, high stretchable, environmental tolerance, and excellent sensitivity hydrogel for flexible sensors and capacitive pens.ACS Appl. Mater. Interfaces, 2023, 15: 44280−44293.

4. Thermochromic hydrogels with an adjustablecritical response temperature for temperaturemonitoring and smart windows.J.Mater. Chem. C,2023,11:583-592.

5.Integrated photo-inspired antibacterial polyvinylalcohol/carboxymethyl cellulose hydrogel dressings for pH real-time monitoring and accelerated wound healing.Int. J.Biolo.Macromol., 2023,238:124123.

6.A multi-responsive targeting drug delivery system for combination photothermal/chemotherapy of tumor.J. Biomat Sci. Polym. E., 2023, 34(2):166-183.

7. Superhydrophobic and photothermal sponge for effective oil/water separation and solar-assisted recovery of viscous oil.J. Appl. Polym. Sci., 2023,e54907.

8.聚天冬氨酸/聚(丙烯酰胺-丙烯酸)/Fe3+离子水凝胶应变传感器的制备及在人体运动监测中的应用.高分子材料科学与工程,2023,39(3):127-133.

9.A UV-filtering, environmentally stable, healable and recyclable ionic hydrogel towards multifunctional flexible strain sensor.Compos. Part BEng., 2022,230:109528.

10.Fabrication of mechanochemically robust superhydrophobic coating based on MPVDF/epoxy resins composites.Prog.Org.Coat.,2022,163:106651.

11.Transparent, highly stretchable, fully self-recoverable ionic hydrogel for flexible ultra-sensitive sensors.Mater. Res.Bull.,2022,146:111627.

12.Fabrication of dual-sensitive heterogeneity organohydrogel with temperature/surrounding-phase regulatory superomniphobic surface for on-demand oil/water separation.Mater. Chem. Phy.,2022,276:125447.

13.超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能.复合材料学报,2022, 39(10):4620-4630.

14.聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能.复合材料学报, 2022, 39(12):5901-5911.

15. Highly luminescent pH-responsive carbonquantum dots for cell imaging.Nanotechnology,2022,33:265002.

16.pH/酶/光热多重响应的金纳米笼/透明质酸核壳结构纳米载体的制备及性能.高等学校化学学报, 2022, 43(4), 20210855.

17.Size-transformablegelatin/nanochitosan/doxorubicin nanoparticles with sequentially triggered drug release foranticancer therapy.Colloids and Surfaces B: Biointerfaces,2022,220:112927.

18. Hybrid double-network hydrogel for highly stretchable,excellent sensitive, stabilized, and transparentstrain sensors.J. Biomat Sci. Polym. E.,2021, 32(12):1548–1563.

19. Mesoporous silica and polymer hybrid nanogels for multistage delivery of an anticancer drug.J. Mater. Sci.,2021, 56: 4830–4842.

20. Self-assembled star-shaped sPCL-PEG copolymer nanomicelles with pH-sensitivity for anticancer drug delivery.Macromol. Chem. Phys., 2021, 222(3):2000379.

21. Underwater superoleophobic APTES-SiO2/PVA organohydrogel for lowtemperature.tolerant, self-healing, recoverable oil/water separation mesh.Chem. Eng. J.,2020, 382: 122925.

22. Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring.J. Mater. Chem. C, 2020,8: 2827-2837.

23. A self-adhesive wearable strain sensor based on highlystretchable, tough, self-healing and ultra-sensitive ionic hydrogel.J. Mater. Chem. C,2020,8, 17349-17364.

24.Multifunctional Ag/polymer composite nanospheres for drug delivery and cell imaging.J. Mater. Sci., 2020, 55:13995–14007.

25. Co(BO2)2supported on MIL-101 as high-performance anode material for Li-ion battery.Mater. Chem. Phys.,2020, 241: 122362.

26. Synthesis and water absorbing properties of KGM-g-P(AA-AM-(DMAEA-EB)) via grafting polymerization method.Polym. Sci. B,2020, 62: 238–244.

27. A rubber-like, underwater superoleophobic hydrogel for efficient oil/water separation.Chem. Eng. J.l,2019, 361: 364-372.

28. Physically cross-linked double-network hydrogel for high-performance oil−water separation mesh.Ind. Eng. Chem. Res.,2019, 58, 21649-21658.

29. Hybrid mesoporous silica nanospheres modified by poly (NIPAM-co-AA) for drug delivery.Nanotechnology, 2019, 30: 355604(1-10).

30. High-strength, rapidly self-recoverable, and antifatigue nano-SiO2/poly (acrylamide-lauryl methacrylate) composite hydrogels.Macromol. Mater. Eng., 2019, 304: 1900130.

31. Ice-template triggered roughness: A facile method to prepare robust superhydrophobic surface with versatile performance.Prog. Org. Coat.,2019, 135: 345–351.

32. Synthesis of cationic polyacrylamide via inverse emulsion polymerization method for the application in water treatment.J. Macromol. Sci. A, 2019, 56: 76-85.

33. Dehydration behaviours of isopropyl group initiate the surface wettability transition of temperature sensitive poly (N-isopropylacrylamide) hydrogel.Mater. Res. Express,2019, 6: 095704.

34. Preparation of thermo/redox/pH-stimulative poly (N- isopropylacryamide- co-N, N’-dimethylaminoethyl methacrylate) nanogels and their DOX release behaviors.J. Biomed. Mater. Res. A., 2019: 107A:1195–1203.

35. Photothermally enhanced chemotherapy delivered by graphene oxide-based multi-responsive nanogels.ACS Appl. Bio. Mater.,2019, 2: 330-338.

36. Corrosion suppression of aluminum metal by optimizing lithium salt concentration in solid-state imide salt-based polymer plastic crystal electrolyte membrane.ACS Appl. Energy Mater.,2018,1:7022−7027.

37. Corrosive environments tolerant, ductile and self-healing hydrogel for highly efficient oil/water separation.Chem. Eng. J.,2018, 354: 1185-1196.

38. Mn3O4/Carbon nanotubes nanocomposites as improved anode materials for lithium ion batteries.J. Solid State Electr.,2018, 23: 3409-3417.

39. The role of synthetic P (MMA-co-MAH) as compatibilizer in the preparation of chlorinated polyethylene/polysodium acrylate water-swelling rubber.Adv. Polym. Technol., 2018, 37: 3650–3658.

40. A facile method to fabricate super-hydrophobic surface with water evaporation-induced phase inversion of stearic acid.Mater. Lett.,2018,223: 124–127.

41. pH/redox/thermo-stimulative nanogels with enhanced thermosensitivity via incorporation of cationic and anionic components for anticancer drug delivery.Int.J. Polym. Mater. PO.,2018,67:288-296.

42. Robust and underwater superoleophobic coating with excellent corrosion and biofouling resistance in harsh environments.Appl.Surf. Sci.,2018, 436: 152–161.

上一篇:卢翠芬

下一篇:马志军